Abstract
Among the limitations known from semiconductor lasers, catastrophic optical damage (COD) is perhaps the most spectacular power‐limiting mechanism. Here, absorption and temperature build up in a positive feedback loop that eventually leads to material destruction. Thus, this is truly an ultimate mechanism, and its continued suppression is a manifestation of progress in device design and manufacturing. After an overview of the current state of knowledge, new investigations of COD using artificially micrometer‐sized starting points created within the active zone in the cavity of 450 nm GaN semiconductor lasers are reported on. Defect growth mechanisms and characteristics are studied during 800 ns current pulses. The defect growth follows the highest light intensity. Secondary defect patterns are studied: complete destruction of the active zone and generation of a point defect cloud at least ≈10 μm into the remaining surrounding material. Extremely large angles (>90°) of damage growth are traced back to the material properties and the aging scenario. The results are compared with former experiments with GaAs‐based lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.