Abstract

The Pico Island constitutes the easternmost sub-aerial domain of a steep WNW-ESE volcanic ridge, which has developed within the Nubia-Eurasia diffuse plate boundary (Azores Triple Junction). The island comprises three volcanic systems, from older to younger: the Topo Volcano, the Fissural System, and the Pico Stratovolcano. From a high-resolution Digital Elevation Model (10m), and new bathymetric, stratigraphic, structural, and high-precision K-Ar data, we reconstruct the main successive stages of growth and partial destruction of the island over the last 200 kyr. We especially concentrate on the central sector of the island, which has recorded gradual movements through slumping and catastrophic flank collapses since ca. 130 kyr. The remmants of the Topo Volcano are partly exposed on Pico's SE flank, and are here dated between 186±5 and 115±4ka. Topo was significantly destroyed by N- and S-directed large-scale flank collapses between ca. 125 and 70ka. On Pico’s N flank, collapse seems to have removed all the unstable material, but in the S the collapse structure is composite, including a major flank collapse and a remnant slump complex that is still active. A first episode of deformation occurred between ca. 125 and 115ka along the master fault of the slump. Between ca. 115 and 69ka, most of the unstable material was removed by a major flank collapse, leaving behind a still considerable volume of unstable material that comprises the active slump. This first collapse was catastrophic and generated a large debris deposit recognized on the high-resolution bathymetry, with a minimum run-out of ca. 17km. The scar was partially filled by volcanic products erupted from volcanic cones developed within the slump depression, and possibly also from the early WNW-ESE Fissural System. Subsequent deformation in the slump area affected in part the filling units, leading to the individualization of secondary curved faults. Younger volcanic products have gradually masked the mass-wasting scars. Unlike the well-known Hilina slump (Hawaii), Pico's slump evolution might be controlled by an active regional tectonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call