Abstract

An easy and cost-effective method has been presented to create a chemosensor AQNC based on the covalent linkage of an anthraquinone (AQ) derivative to nanocellulose (NC) and demonstrates efficient detection capabilities for Hg2+, Cr3+, and As3+ ions. The linkage between AQ and NC to form modified chemosensor AQNC has been confirmed thorough various characterization techniques such as infrared (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). When exposed to Hg2+/Cr3+/As3+ ions, the fluorescence spectrum of AQNC showed fluorescence quenching. This change has been attributed to the ease of the transfer of electrons and/or energy from the fluorophore (AQNC) to the empty d-orbital of the Hg2+/Cr3+/As3+ions that might have facilitated the non-radiative deactivation route, resulting in fluorescence quenching. Thus the successful generation of AQNC will open the imminent of cellulose for waste water remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call