Abstract

Conditional remodeling of enzyme catalysis is a formidable challenge in protein engineering. Herein, we have undertaken a unique active site engineering tactic to command catalytic outcomes. With ten-eleven translocation (TET) enzyme as a paradigm, we show that variants with an expanded active site significantly enhance multistep C-H oxidation in 5-methylcytosine (5mC), whereas a crowded cavity leads to a single-step catalytic apparatus. We further identify an evolutionarily conserved residue in the TET family with a remarkable catalysis-directing ability. The activating variant demonstrated its prowess to oxidize 5mC in chromosomal DNA for potentiating expression of genes including tumor suppressors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.