Abstract

Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the corresponding normal tissues and in cell lines using quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Both the protein function and the protein-independent role of TETs were investigated by cell viability assays and cell invasion assays using in vitro and in vivo models. We found that all three TET genes were strongly up-regulated at the transcript level in CRC samples compared to matched normal tissues. The same results were observed in colorectal cancer cell lines. Knockdown of TETs by shTET1/2/3 showed that TET family members inhibited CRC growth and metastasis. We showed that TET family member degradation by miR-506 inhibits cell proliferation and invasion in colorectal cancer. Through this study, we advance our understanding of the expression levels TETs and miR-506 in CRC and further clarify the internal regulatory mechanism of miR-506 by targeting TET during CRC processes. These findings may contribute to a novel avenue for researching and developing targeted therapies for CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call