Abstract
In the present paper, we compare the activity, selectivity, and stability of a supported nickel catalyst in classical heating conditions and in magnetically activated catalysis by using iron wool as a heating agent. The catalyst, 5 wt% Ni supported on titania (Degussa P25), was prepared via an organometallic decomposition method and was thoroughly characterized by using elemental, microscopic, and diffraction techniques. In the event of magnetic induction heating, the % CO2 conversion reached a maximum of ~85% compared to ~78% for thermal conditions at a slightly lower temperature (~335 °C) than the thermal heating (380 °C). More importantly, both processes were found to be stable for 45 h on stream. Moreover, the effects of magnetic induction and classical heating over the catalyst evolution were discussed. This study demonstrated the potential of magnetic heating-mediated methanation, which is currently under investigation for the development of pilot-scale reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.