Abstract
The effect of catalytic reforming of volatiles from pyrolysis of walnut shell using an innovative catalyst was investigated in this study. The analysis was conducted in a two-stage fixed bed reactor operated at 700–1100 °C. The prepared Ni/olivine/La2O3/ZrO2 catalyst had a significant performance on the catalytic tar reforming reactions. In the catalytic reforming of tar, the weight of catalyst is critical. However, it was observed that the tar reforming efficiency increased with increase in catalyst-weight and temperature. In addition, the highest tar reforming efficiency (98.9%) was attained with 20 g of Ni/olivine/La2O3/ZrO2. After 4 cycles of regeneration, tar reforming efficiency was kept stable. The product gas composition was highest at 1100 °C with a very low tar yield, which reduced from 18.1 to 2.1 wt% at 700–1100 °C. At varying reforming conditions, the product gas composition increased. The product-gas distribution varied at different steam flow rates (3–9 mL/h) as well as particle size (0.2–3.5 mm) and the highest yield was achieved with the smallest particle size (0.2 mm) of walnut shell thus confirming the superb catalytic activity of Ni/olivine/La2O3/ZrO2 for tar reformation into gases owing to high dispersion of ZrO2 in the shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.