Abstract

Waste plastics pose significant environmental risks due to their non-biodegradable nature and accumulation in the environment. The pandemic has exacerbated this issue by increasing the production of plastic medical waste such as surgical masks. This study developed Ni/Al-MOF-derived catalysts for pyrolysis, an effective plastic waste utilization technology. By optimizing conditions, the study successfully converted waste surgical masks, made primarily of polypropylene, into gasoline or diesel range chemicals. The oil yield from polypropylene waste reached 72.8 % using Ni/Al-MOF-derived catalysts with 5 % Ni loading at 450°C, while surgical masks yielded 58.9 % oil under the same conditions. Catalyst characterization revealed a high surface area and evenly distributed Ni particles in MOF-derived Al2O3, maximizing catalytic performance. This catalyst provides a promising solution for converting waste surgical masks into liquid fuels, reducing the environmental impact of plastic products, and promoting plastic waste recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.