Abstract

Plastics usage is rising daily because of increased population, modernization, and industrialization, which produces a lot of plastic garbage. Due to their various chemical structures, long chain polymeric compositions, and thermal/decomposition behavior, it is challenging to recycle these plastic wastes into hydrocarbon fuels. In the current work, domestic plastic waste was pyrolyzed at 473 to 973 K in a fixed bed reactor and compared with the three virgin plastics LDPE (low-density polyethylene), HDPE (high-density polyethylene), and PP (polypropylene), as well as a mixture of the three (virgin mixed plastics). The pyrolysis results showed that maximum liquid hydrocarbons obtained from HDPE, LDPE, PP, mixed plastic, and domestic waste were 64.6 wt.%, 62.2 wt.%, 63.1 wt.%, 68.6 wt.%, and 64.6 wt.% at 773 K, respectively. The composition of liquid fuels was characterized using FTIR and GC-MS, which showed a wide spectrum of hydrocarbons in the C8–C20 range. Furthermore, liquid fuel characteristics such as density, viscosity, fire and flash point, pour point, and calorific value were examined using ASTM standards, and the results were found to be satisfactory. This study provides an innovative method for recycling waste plastics into economical hydrocarbon fuel for use in transportation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.