Abstract

Natural Buton Asphalt (Asbuton) is a naturally occurring asphalt that is contained in rock deposit located in Buton Island, Indonesia. Asbuton is mostly used as a mixture of bitumen since it has the potential to be cracked into hydrocarbon and produced as a liquid fuel for energy consumption. The present study aims to investigate the effect of pyrolysis temperature and the mass ratio of the Asbuton with catalyst on the Asbuton conversion. The pyrolysis process is carried out on a batch using vacuum reactor with various temperatures and mass ratios of catalyst to Asbuton. The gas coming out of the process is passed through the condenser, where the condensed gas (liquid product) is collected in the flask, whereas the uncondensed gas (gas product) is collected in a gas holder and the yield is analyzed upon the pyrolysis process completion. The respond parameter of the catalytic pyrolysis are oil flammability, yield, and oil density. The synthesized ZSM-5 catalyst is more effective for the Asbuton bitumen cracking process as opposed to the Natural Zeolite. Furthermore, it is investigated that the most optimum operating condition throughout this experiment was 70.07% and obtained at 350 °C with 9% ZSM-5 catalyst. In terms of product characterization, the liquid product can be ignited during the flame test. From the S.G. and API gravity values, it is suggested that the products belong to crude oil range, and thus, confirming that Asbuton has great potentials to be developed into alternative fuel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.