Abstract

Palladium (Pd)‐based catalysts hold promise as an alternative water treatment technology for nitrate (NO3), but practical application requires a flow‐through reactor that efficiently delivers hydrogen (H2) from gas to water. A trickle bed reactor (TBR) packed with a 0.1 percent by weight (wt%) Pd–0.01 wt% In/γ‐Al2O3 (indium and porous aluminum oxide) catalyst was evaluated to address this challenge. Catalytic activity generally increased with H2 superficial velocity (0.65–29.6 m/h) and liquid (deionized water) superficial velocities from 14.8 to 26.6 m/h before decreasing at 38.5 m/h. This decrease corresponded to a change in flow regime and suggests that optimal TBR performance occurs at the transition from pulse to bubble flow. An optimal TBR activity of 19.5 ± 1.3 mg NO3/min‐g Pd was obtained; this is only ~18% of the batch reactor activity as a result of H2 mass transfer limitations, but three to 15 times greater than activities obtained with previous flow‐through reactors. Catalyst deactivation occurred in the TBR after 41 days of operation, motivating the need for improved fouling mitigation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.