Abstract

Catalytic reduction of nitrate in ion exchange (IX) waste brine for reuse is a promising option for reducing IX costs and environmental impacts. A recycling trickle bed reactor (TBR) was designed and optimized using 0.5 percent by weight (wt%) palladium–0.05 wt% indium catalysts supported on US mesh size 12 × 14 or 12 × 30 activated carbon particles. Various liquid superficial velocities (Ur) and hydrogen gas superficial velocities (Ug‐H2) were evaluated to assess performance in different flow regimes; catalyst activity increased with Ug‐H2 at all Ur for both catalysts and was greatest for the 12 × 30 catalyst at the lowest Ur (8.9 m/h). The 12 × 30 catalyst demonstrated up to 100% higher catalytic activity and 280% higher mass transfer rate compared with the 12 × 14 catalyst. Optimal TBR performance was achieved with both catalysts in the trickle flow regime. The results indicate that the TBR is a promising step forward, and continued improvements are possible to overcome remaining mass transfer limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.