Abstract

The iron-chelating catechol siderophore vibriobactin of the pathogenic Vibrio cholerae is assembled by a four-subunit, ten-domain nonribosomal peptide synthetase system, VibE, VibB, VibH, and VibF, using 2,3-dihydroxybenzoate and L-threonine as precursors to two (dihydroxyphenyl)methyloxazolinyl groups in amide linkage on a norspermidine scaffold. We have utilized site-specific and domain-deletion mutagenesis to map the heterocyclization and primary and secondary amine acylation activities of the six-domain (Cy1-Cy2-A-C1-PCP-C2) VibF subunit. We have found that Cy2 is capable of and limited to the condensation (amide bond formation) step of the three-step heterocyclization process, while Cy1 is capable of and limited to the final processing (cyclization/dehydration) steps to the completed heterocycle. Additionally, we have observed that the C2 domain functions in both N(9) (primary amine) acylation and N(5) (secondary amine) acylation of the (dihydroxybenzoyl)norspermidine substrate, leaving no catalytic role for the C1 domain, a conclusion confirmed with the formation of vibriobactin in a C1-deficient system. Thus VibF is an NRPS with two domains, Cy1 and Cy2, that perform a function otherwise performed by one and with one domain, C2, that performs a function otherwise performed by two. While C2 appeared to tolerate uncyclized threonine in place of the usual heterocycle in primary amine acylation, it refused this replacement in the corresponding donor substrate in secondary amine acylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.