Abstract
Knowledge of antibiotic desorption from high-temperature biochar is essential for assessing their environmental risks, and for the successful application of biochar to remove antibiotics. In previous studies, irreversible pore deformation, formation of charge-assisted hydrogen bonds or amide bonds were individually proposed to explain the desorption hysteresis of antibiotics on biochars, leading to a debate on hysteresis mechanism. In this study, desorption of sulfamethoxazole (SMX), ciprofloxacin (CFX) and tetracycline (TET) on a wood chip biochar produced at 700 °C (WBC700) and its oxidized product (O-WBC700) was investigated to explore the underlying hysteresis mechanism. Significant desorption hysteresis was observed for SMX, CFX and TET on WBC700 and O-WBC700. Hysteresis index (HI) of each antibiotic was higher on O-WBC700 with more oxygen-containing groups than WBC700, and was higher at lower equilibrium concentration. HI of antibiotics on WBC700 (or O-WBC700) increased in the order of SMX < CFX < TET. The calculated adsorption enthalpy of each antibiotic on WBC700 was positive, indicating an endothermic process. These phenomena together with FTIR, XPS spectra confirmed that the desorption hysteresis mechanism of antibiotics on high-temperature biochar is the formation of amide bonds by amidation reaction, but not the pore deformation or the hydrogen bond. Moreover, antibiotic can form amide bonds with WBC700 only if the amine group with pKa > 4.0, and the HI values were positively correlated with their pKa values. Amine group of antibiotics with higher pKa value show more nucleophilicity and could form stronger amide bonds with carboxyl group of biochar. The obtained results could help to solve the debate on desorption hysteresis mechanism of antibiotics on high-temperature biochars, and provide a new insight into the role of amine groups and amidation reaction on the hysteresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.