Abstract

Oxime and carbonyl functional groups serve as powerful chemical hubs for constructing complex synthetic targets and valuable molecular scaffolds. In furthering this value, we report a photopromoted catalytic deoximation protocol for converting oximes and their derivatives to carbonyl functional groups. This strategic approach benefits from the use of renewable light energy input and ambient air conditions, in addition to demonstrating good substrate scope, functional group tolerance, and product yields. In offering, insights into these reactivity mechanistic studies are communicated, and the value of this protocol is further shown through one-pot operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call