Abstract

Constructing an advanced catalytic system for the purposeful liquefaction of lignin into chemicals has presented a significant prospect for sustainable development. In this work, the catalytic process of mesoporous homologous biochar (HBC) derived from alkali lignin supported copper catalysts (Cu/HBC) was reported for catalytic liquefaction of alkali lignin to monophenols. The characterization results revealed HBC promoted the formation of metal-support strong interaction and the generation of oxygen vacancies, enhancing the acid sites of Cu/HBC. Under the optimal conditions (0.2 g alkali lignin, 280 °C, 0.05 g Cu/HBC, 6 h, 18 mL water), the monophenol yield reached 75.01 ± 0.76 mg/g, and the bio-oil yield was 57.98 ± 1.76%. The copious mesopores, high surface area, and rich acidic sites were responsible for the high activity of Cu/HBC, which significantly outperformed the controlled catalysts, such as HBC, commercial activated carbon (AC), and reported Ni/AC, Ni/MCM-41, etc. In four consecutive runs, the catalytic performance of Cu/HBC was only reduced by 3.65% per cycle. Interestingly, catechol was selectively produced with Cu/HBC, which provided an effective strategy for the conversion of G/S-type lignin to catechyl phenolics (C-type). These findings indicate that the Cu/HBC will be a promising substitution of noble metal-supported catalysts for conversion biomass into high value-added phenolics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call