Abstract
The specific activity of ruthenium supported on zeolite Y in the hydrogenation of carbon monoxide is enhanced when the charge-compensating sodium ions are replaced by multivalent cations or protons. This effect is attributed to an increase in electron deficiency of the metal crystallites owing to an electron transfer from the metal to electron-acceptor sites in the support. Hydrogen then competes more successfully with carbon monoxide for available surface sites, resulting in an increased hydrogenation activity. This conclusion is supported by the marked decrease in the selectivity to olefins which is observed. The electronic influence of the support is greater for small metal particles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have