Abstract
Natural gas (Methane) is currently the primary source of catalytic hydrogen production, accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However, the SMR process suffers with insufficient catalytic activity, low long-term stability, and excessive energy input, mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024, novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review, we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies, such as dry reforming with CO2 (DRM), partial oxidation with O2, autothermal reforming with H2O and O2. Finally, we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e., methanol, formic acid, and acetic acid), which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Highlights
Methane (CH4 ) is an important chemical feedstock for hydrogen production
steam–methane reforming (SMR) still remains a complicated reaction process, which could be further optimized in terms of catalyst design and operational engineering
Catalysts with better catalytic performance could be designed by following the descriptors mentioned in this review, including particle size effect, the selection of proper promoters and supports (e.g., CeO2 and ZrO2 ), and modification of coordination states
Summary
Luning Chen 1,† , Zhiyuan Qi 1,† , Shuchen Zhang 1 , Ji Su 1,2, * and Gabor A.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have