Abstract

The reuse and recycling of biomass materials can minimize the environmental impact of society, and can help create a sustainable community. Although cellulosic biomass from demolished buildings is a promising resource for recycling, contaminants, such as wood preservatives that likely contain metal oxides, are found in recycled wood dust. These oxides could act as catalysts for the oxidation of organic materials, resulting in spontaneous ignition of large piles of recycled wood dust. Copper(II) oxide (CuO) is major component in wood preservative and plays a catalytic role in the oxidation of cellulose, which could cause spontaneous ignition. The present study focused on the influence of CuO on oxidation of cellulose. The exothermal behavior and mass loss of cellulose/CuO mixtures were investigated. Changes in exothermal behavior and mass loss with an increasing amount of CuO were measured by differential scanning calorimetry and thermogravimetry. In addition, kinetics and spectroanalysis were conducted to determine the catalytic effect of CuO on oxidation of cellulose and help determine the oxidation model of cellulose upon addition of CuO. Results revealed a change in exothermal behavior and increase in mass loss with increasing amounts of CuO. In addition, CuO had a catalytic effect on the oxidation of cellulose, which helped determine the oxidation model of cellulose upon addition of CuO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call