Abstract

A three-component hydrocarboxylation of an olefin with CO2 and H2 could be regarded as a dream reaction, since it would provide a straightforward approach for the synthesis of aliphatic carboxylic acids in perfect atom economy. However, this transformation has not been realized in a direct manner under mild conditions, because boosting the carboxylation with thermodynamically stable CO2 while suppressing the rapid hydrogenation of olefin remains a challenging task. Here, we report a rhodium-catalysed reductive hydrocarboxylation of styrene derivatives with CO2 and H2 under mild conditions, in which H2 served as the terminal reductant. In this approach, the carboxylation process was largely accelerated by visible light irradiation, which was proved both experimentally and by computational studies. Hydrocarboxylation of various kinds of styrene derivatives was achieved in good yields without additional base under ambient pressure of CO2/H2 at room temperature. Mechanistic investigations revealed that use of a cationic rhodium complex was critical to achieve high hydrocarboxylation selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.