Abstract

Liquid hydrocarbon fuels obtained from the catalytic cracking animal fats and plant oils have become one kinds of the attractive fuels because of their possible environment benefits and the current concern over the depletion of fossil fuel sources. In this work, using the combined methods of one-pot synthesis and wetness-impregnation, some basic mesoporous molecular sieves K2O/MeO-SBA-15 (Me = Ca, Mg or Ba) were prepared, characterized and used in the catalytic cracking of rubber seed oil (RSO). The results indicated that the catalysts K2O/MeO-SBA-15 had better catalytic performances than MeO-SBA-15, assigning to their stronger basicity. The catalyst K2O/MgO-SBA-15 obtained with 15 wt% KNO3 impregnation concentration showed the excellent catalytic performance with about 93.2% conversion and 78.3% yield of liquid hydrocarbon biofuel. The obtained liquid biofuel had similar chemical composition to diesel-based fuels and showed good cold flow property, high calorific and low acid value. Importantly, the catalyst K2O/MgO-SBA-15 was of excellent reusability, and it was reused with negligible loss in its catalytic performance for five times, attributing to the MgO layer between silicon skeleton and potassium species which prevents the reaction between silicon in the framework and potassium species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call