Abstract

ConspectusIn recent years, significant efforts have been directed toward achieving efficient and mild lignocellulosic biomass conversion into valuable chemicals and fuels, aiming to address energy and environmental concerns and realize the goal of carbon neutrality. Lignin is one of the three primary building blocks of lignocellulose and the only aromatic renewable feedstock. However, the complex and diverse nature of lignin feedstocks, characterized by their three-dimensional, highly branched polymeric structure and intricate C-O/C-C chemical bonds, results in substantial challenges. To tackle these challenges, we carried out extensive research on selectively activating and transforming chemical bonds in lignin for chemical synthesis. In this Account, we discuss our recent progress in catalytic lignin conversion.Our work is focused on two main objectives: (i) achieving precise and selective transformation of C-O/C-C bonds in lignin (and its model compounds) and (ii) fully utilizing the aromatic nuclei and side chains present in lignin to produce valuable chemicals. Lignin consists of interconnected phenylpropanoid subunits linked by interlaced C-C/C-O bonds. To unlock the full potential of lignin, we propose the concept of "the full utilization of lignin", which encompasses both the aromatic nuclei and the side chains (e.g., methoxyl and polyhydroxypropyl groups).For the conversion of aromatic nuclei, selective activation of C-O and/or C-C bonds is crucial in synthesizing targeted aromatic products. We begin with model compounds (such as anisole, phenol, guaiacol, etc.) and then transition to protolignin feedstocks. Various reaction routes are developed, including self-supported hydrogenolysis, direct Caryl-Csp3 cleavage, coupled Caryl-Csp3 cleavage and Caryl-O hydrogenolysis, and tandem selective hydrogenation and hydrolysis processes. These tailored pathways enable high-yield and sustainable production of a wide range of aromatic (and derived) products, including arenes (benzene, toluene, alkylbenzenes), phenols, ketones, and acids.In terms of side chain utilization, we have developed innovative strategies such as selective methyl transfer, coupling depolymerization-methyl shift, selective acetyl utilization, and new activation methods such as amine-assisted prefunctionalization. These strategies enable the direct synthesis of methyl-/alkyl-derived products, such as acetic acid, 4-ethyltoluene, dimethylethylamine, and amides. Additionally, aromatic residues can be transformed into chemicals or functionalized ingredients that can serve as catalysts or functional biopolymer materials. These findings highlight promising opportunities for harnessing both the aromatic nuclei and side chains of lignin in a creative manner, thereby improving the overall atom economy of lignin upgrading.Through innovative catalyst engineering and reaction route strategies, our work achieves the sustainable and efficient production of various valuable chemicals from lignin. By integrating side chains and aromatic rings, we have successfully synthesized methyl-/alkyl-derived and aromatic-derived products with high yields. The full utilization of lignin not only minimizes waste but also opens up new possibilities for generating chemical products from lignin. These novel approaches unlock the untapped potential of lignin, expand the boundaries of lignin upgrading, and enhance the efficiency and economic viability of lignin biorefining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.