Abstract

Significant research has focused on enhancing catalytic performance through solar energy conversion, and the design of photocatalysis incorporating surface plasmons is drawing considerable attention as a highly competitive catalyst system. Although the hot electron process is the primary mechanism in plasmonic photocatalysis, the precise function of hot electron transport in catalytic reactions remains unclear due to the absence of direct measurement. Here, we demonstrate the intrinsic relationship between surface-plasmon-driven hot electrons and catalytic activity during hydrogen oxidation, utilizing catalytic Schottky nanodiodes (Pt/Ag/TiO2) for antenna-reactor plasmonic photocatalysis. The simultaneous and independent measurements of hot electron flow and catalytic turnover rate show that the plasmonic effect amplifies the flow of reaction-induced hot electrons (chemicurrent), leading to enhanced catalytic activity. Plasmonic photocatalytic performance can be controlled with light wavelengths, intensity, surface temperature, and structures. These results elucidate the hot electron flow on photocatalysis and offer improved strategies for efficient catalytic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call