Abstract
Microbial fuel cells (MFCs) are a sustainable alternative for wastewater treatment and clean energy generation. The efficiency of the technology is dependent on the cathodic oxygen reduction reaction, where the sluggish reaction kinetics hampers its propensity. Carbonaceous materials with high electrical conductivity have been widely explored for oxygen reduction reaction (ORR) catalysts. Here, incorporating transition metal (TM) and heteroatom into carbon could further enhance the ORR activity and power generation in MFCs. Nitrogen (N)-doped carbons have also been a popular research hotspot due to abundant active sites formed, resulting in superior conductivity, stability, and catalytic activity over carbons. This review summarizes the progress in the carbon-based materials (primary focus on the cathode) for ORR and their utilization in MFCs. Furthermore, we discussed the conceptualization of MFCs and carbonaceous materials to instigate the ORR kinetics and power generation in MFC. Furthermore, prospects of carbon-based materials for actual application in bio-energy generation have been discussed. Carbonaceous catalysts and biomass-derived carbons exhibit good potential to replace precious Pt catalysts for ORR. M-N-C catalysts were found to be the most suitable catalysts. Electrocatalysts with MNx sites are able to achieve excellent activity and high-power output by taking advantage of the active site exposure and rapid mass transfer rate. Moreover, the use of biomass-derived carbons/self-doped carbons could further reduce the overall cost of catalysts. It is anticipated that the research gaps and future perspectives discussed will show new avenues to develop excellent electrocatalysts for better performance and transformation of technology to industrial applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have