Abstract

AbstractThe hydrogenation of acetylene was investigated on multiwalled carbon nanotubes (MWCNTs) with an average diameter of 35 nm and prepared by chemical vapor deposition from ethylene. The MWCNT structure and surface‐oxygen‐containing functional groups were verified by transmission electron microscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy, and Boehm titration. Significant differences in the surface functionalities of the MWCNTs were found before and after catalysis, but the morphology of the MWCNTs did not change. During catalysis, the MWCNTs are characterized by a large number of defects and the surface is functionalized with hydroxy and carbonyl groups. The MWCNTs demonstrated high selectivity towards ethylene formation. The formation of methane was not recorded. Our study indicates that acetylene hydrogenation proceeds according to a Langmuir–Hinshelwood mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.