Abstract

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call