Abstract

Magnetic Fe3O4 nanoparticles as a support were modified with an amino-terminated organosilicon and cyanoric choloride ligands. The novel manganese complex was grafted on modified magnetic support (Mn(II)-Met@MMNPs). The nanocatalyst structure, particle size, morphology and surface properties was well characterized by elemental analysis, ICP-AES, AAS, EDS, FT-IR, SEM, TEM, DLS, VSM, TGA, XRD and XPS. In order to develop an effective heterogeneous nanocatalyst for eco-friendly aerobic, highly active and selective catalytic reactions, synthesized nanocatalyst was applied in oxidation of various organic compounds. The catalytic performance of the manganese nanocatalyst in the aerobic oxidation of ethylbenzene (EB), cyclohexene (CYHE) and various aldoximes and ketoxime were studied. Selective aerobic oxidation of EB and CYHE and various oximes were catalyzed by the Mn-nanocatalyst using N-hydroxyphthalimide (NHPI) with molecular oxygen as the green oxidant without the need of any reducing agent, and respectively the acetophenone (AcPO) as a benzylic product, 2-cyclohexene-1-one (CYHEO) as an allylic product and corresponding carbonyl compounds were obtained. The oxidation process has been optimized for Mn-nanocatalyst by considering the effect of different parameters such as the ratio and amount of Mn-nanocatalyst/NHPI, reaction time and solvent for achieving maximum conversion and selectivity to products. Due to their significant low cost, informal preparation, easy magnetically separation from reaction mixture, excellent catalytic performance, simple recovery and reusability without any metal leaching, the Mn-nanocatalyst has huge application prospect in selective and green oxidation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call