Abstract

A [FeFe]-hydrogenase model (1) containing a chelating diphosphine ligand with a pendant amine was readily oxidized by Fc(+) (Fc = Cp2Fe) to a Fe(II)Fe(I) complex ([1](+)), which was isolated at room temperature. The structure of [1](+) with a semibridging CO and a vacant apical site was determined by X-ray crystallography. Complex [1](+) catalytically activates H2 at 1 atm at 25 °C in the presence of excess Fc(+) and P(o-tol)3. More interestingly, the catalytic activity of [1](+) for H2 oxidation remains unchanged in the presence of ca. 2% CO. A computational study of the reaction mechanism showed that the most favorable activation free energy involves a rotation of the bridging CO to an apical position followed by activation of H2 with the help of the internal amine to give a bridging hydride intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.