Abstract

This paper explores the catalytic action of as-synthesized CuAlS2 microparticles and nanoparticles on cellulose pyrolysis. The CuAlS2 microparticles were synthesized by heating precursor elements at high temperatures in an evacuated quartz ampoule. CuAlS2 nanoparticles were synthesized at ambient temperature by using a simple wet chemical technique. Before using the microparticles and nanoparticles for catalytic study, they were comprehensively characterized. The thermal analysis, including catalytic study of both the CuAlS2 microparticles and nanoparticles on cellulose pyrolysis, was carried out by thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis (DTA) techniques. Prior to studying their role as catalysts in cellulose pyrolysis, the CuAlS2 microparticles and nanoparticles were characterized by thermal analysis in an inert N2 atmosphere. The TG analysis of as-synthesized CuAlS2 microparticles and nanoparticles showed three and five steps of decomposition, with total weight losses of 6.89% and 53.37%, respectively. The TG analysis of pure cellulose and cellulose mixed with 10%, 5% and 2.5% CuAlS2 microparticles and nanoparticles demonstrated that the nanoparticles are better catalysts in cellulose pyrolysis than the microparticles. The TG analysis results of cellulose pyrolysis have been supported by the DTA and DTG curves recorded simultaneously. The obtained results are explored in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call