Abstract

Electronegative substituents arrayed in 1,3-relationships along saturated carbon frameworks can exert strong influence over molecular conformation due to dipole minimization effects. Simple and general methods for incorporation of such functional group relationships could thus provide a valuable tool for modulating molecular shape. Here, we describe a general strategy for the 1,3-oxidation of cyclopropanes using aryl iodine(I-III) catalysis, with emphasis on 1,3-difluorination reactions. These reactions make use of practical, commercially available reagents and can engage a variety of substituted cyclopropane substrates. Analysis of crystal and solution structures of several of the products reveal the consistent effect of 1,3-difluorides in dictating molecular conformation. The generality of the 1,3-oxidation strategy is demonstrated through the catalytic oxidative ring-opening of cyclopropanes for the synthesis of 1,3-fluoroacetoxylated products, 1,3-diols, 1,3-amino alcohols, and 1,3-diamines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.