Abstract

AbstractProton exchange membrane fuel cells (PEMFCs) are considered among the most promising technologies for hydrogen utilization in both stationary and transport applications. Nevertheless, the cost of its components – especially the catalyst and the membrane – is still consistent and far from the cost predicted by the US Department of Energy. It is therefore essential to predict the effect of contaminants on PEMFC materials and to estimate their useful life. The literature on this topic is consistent, but the absence of standards for the experimental tests under contaminated flows makes it difficult to extrapolate the generic degradation trends and compare the results of different publications. This work aims to collect and interpret the results of the recent studies on catalyst contamination: the voltage degradation rate and reduction effect are defined via a data modeling work to understand and compare the effects of different contaminants, their concentrations, exposure times, and current densities. Thanks to the results of the present study, some conclusions are drawn regarding the impact of the different pollutants on cell voltage decay, with attention dedicated to establishing a correlation that takes into account also the different operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call