Abstract

Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis employs reactivity not typically observed in Lewis acid-catalyzed reactions. In converting a ketone with a pendant olefin into a cycloalkene and a simple carbonyl byproduct, the reaction requires the Lewis acid catalyst to differentiate between the carbonyl of the substrate and that of the byproduct. It is necessary to determine how this solution interaction imparts the desired reactivity to best employ this method. Herein, we report detailed kinetic, spectroscopic, and colligative measurements applied toward the identification of the solution structures of the active Fe(III) and Ga(III) carbonyl-olefin metathesis catalysts. These data are consistent with formation of Lewis acid-carbonyl pairs for both metal systems under stoichiometric conditions. However, they diverge in the presence of higher equivalents of carbonyl, with Fe(III) forming highly ligated complexes, and no observed change for Ga(III). These findings are consistent with the resting state identity of the Fe(III) metathesis catalyst changing over the course of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.