Abstract

Serratia marcescens is an emerging opportunistic pathogen with a remarkably broad host range. The cAMP-regulated catabolite repression system of S. marcescens has recently been identified and demonstrated to regulate biofilm formation through the production of surface adhesions. Here we report that mutations in components of the catabolite repression system ( cyaA and crp) eliminate flagellum production and swimming motility. Exogenous cAMP was able to restore flagellum production to adenylate cyclase mutants, as determined by transmission electron microscopy and PAGE analysis. A transposon-generated suppressor mutation of the crp motility defect mapped to upstream of the flhDC operon. This suppressor mutation resulted in an upregulation of flhD expression and flagellum production, indicating that flhDC expression is sufficient to restore flagellum production to crp mutants. Lastly, and contrary to a previous report, we found that flhD expression is controlled by the catabolite repression system using quantitative RT-PCR. Together, these data indicate that flagellum production is regulated by the cAMP-dependent catabolite repression system. Given the role of flagella in bacterial pathogenicity, the regulatory pathway described here may assist us in better understanding the putative role of motility in dissemination and virulence of this opportunistic pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.