Abstract

PurposeThe main function of the castellation process is making I-sections stiffer by increasing the height of web and supplying a higher moment capacity of primary axis than plain-webbed members of the same weight. In addition, it optimizes the use of heavy, costly constructional steel material and provides good services accessibility. The purpose of this study was to investigate the strength and buckling behavior of axially loaded castellated cruciform steel columns using finite element analysis. Although a significant body of research exists on the failure of different columns, there is no proper criterion introduced to determine the point of buckling in the equilibrium path of an imperfect column.Design/methodology/approachThis paper considers a wide range of practical geometric dimensions and various end conditions using ANSYS software. Findings are reported for about 224 samples of castellated cruciform I-shaped sections, and a simplified approach to evaluate buckling capacity of castellated columns, using the slenderness-load curve, is developed. In addition, the axial compressive capacities of those steel sections are investigated numerically in the current study.FindingsThe results of nonlinear analyses of these columns revealed that the load-carrying capacity of castellated cruciform steel columns far outweighs and is more appropriate than that of the traditional cruciform steel columns. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns in the range of elastic and inelastic behavior.Practical implicationsThis study can provide a background for practical engineering applications and design specifications for steel structures with castellated sections. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns showing both elastic and inelastic behavior. Because this method showed reliable performance, it can be used during experimental tests for detecting buckling point.Originality/valueThis study can provide background for practical engineering applications and design specifications for steel structures with castellated sections; also, a physical criterion has been defined for calculating the buckling load of real columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.