Abstract

Controlling the access of proteases to cleavable peptides placed at specific locations within macromolecular architectures represents a powerful strategy for biologically responsive materials design. Here, we report the synthesis of peptide-containing bivalent bottlebrush (co)polymers (BBPs) featuring polyethylene glycol (PEG) and 7-amino-4-methylcoumarin (AMC) pendants on each backbone repeat unit. The AMCs are linked via caspase-3-cleavable peptides which, upon enzymatic cleavage, provide a "turn-on" fluorescence signal due to the release of free AMC. Time-dependent fluorscence measurements demonstrate that the caspase-3-induced peptide cleavage and AMC release from BBPs is strongly dependent on the BBP backbone length and the AMC-peptide linker location within the BBP architecture, revealing fundamental insights into the interactions of enzymes with BBPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.