Abstract

Bottlebrush polymers can be used to introduce novel surface properties including hydrophilicity, stimuli-responsiveness, and reduced friction forces. However, simple, general, and efficient approaches to cross-linking bottlebrush polymer films and coatings are limited. Here, we report that bottlebrush polymers with an unsaturated polynorbornene backbone and thiol-terminated side chains can be cross-linked on demand by UV irradiation to produce uniform and insoluble bottlebrush polymer coatings. To quantify the kinetics and efficiency of cross-linking by UV exposure (254 nm), we measured the normalized residual thickness (NRT) of bottlebrush and linear polymer films after UV exposure and solvent washing. For bottlebrush polymers with thiol-terminated polystyrene (PS) side chains, the NRT exceeded 60% for a UV dose of 1.0 J/cm2, while unfunctionalized linear PS required a dose of 7.9 J/cm2 to achieve similar NRT values. Rapid UV-induced cross-linking of the bottlebrush PS was attributed to the thiol-ene coupling of the thiol-terminated side chains with the unsaturated polynorbornene backbones, as demonstrated through FTIR measurements and control studies involving bottlebrush polymers with saturated backbones. To establish the broader applicability of this approach, UV-induced cross-linking was demonstrated for thin films of bottlebrush polymers with thiol-terminated poly(methyl acrylate) (BB-PMMA-SH) side chains and those with poly(ethylene glycol) (BB-PEG) and poly(lactic acid) (BB-PLA) side chains which do not contain thiol end groups. UV-induced cross-linking of BB-PEG and BB-PLA films required the use of a multifunctional thiol additive. Finally, we demonstrated that bottlebrush polymer multilayers can be fabricated through sequential deposition and UV-induced cross-linking of different bottlebrush polymer chemistries. The cross-linking process outlined in this work is simple, general, and efficient and produces solvent-resistant coatings that preserve the unique properties and functions of bottlebrush polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.