Abstract

Cellular senescence is activated by numerous cellular insults, in particular those driving cancer formation, resulting in stable proliferation arrest and acquisition of specific features. By self-opposing to oncogenic stimulation, senescence is considered as a failsafe program, allowing, when functional, to inhibit cancers occurrence. Compelling evidences suggest a tumor suppressive activity of caspase-2, eventually independently of its effect on cell death. The original results described here demonstrate that this tumor suppressive activity of caspase-2 is mediated, at least in part, by its pro-senescing activity. Indeed, we have demonstrated in vitro and in vivo that loss of function of caspase-2 allows to escape oncogenic stress induced senescence. These results are discussed in the context of known tumor suppressive activity of caspase-2.

Highlights

  • Caspase-2 is the most evolutionarily conserved of all the caspases

  • During cell cycle arrest caused by tumor suppressors, mitogenic signaling like Ras and mTOR drive conversion of cell cycle arrest to senescence [5]

  • The mechanisms involved in oncogene-induced senescence escape are still unclear, especially in epithelial cells [6]

Read more

Summary

Introduction

Caspase-2 is the most evolutionarily conserved of all the caspases. the caspase-2 knockout mice do not display major alteration and its role in apoptosis remains discussed [1]. Caspase-2 is regulating proliferation and transformation showing a role beyond apoptosis regulation. During these last years compelling evidence support an important tumor suppressive role of the caspase-2. The loss of caspase-2 cooperates with Ras to transform mouse embryonic fibroblasts [2], with myc to favor lymphomagenesis [2, 3], or with neu to favor mammary tumorigenesis [4].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.