Abstract

The use of LEGO® bricks in the higher education classroom has increased in the last two decades. This is no different in the STEM classroom and several disciplines, including physics, chemistry, and biology, have all made use of LEGO® bricks in some way to create models for active learning activities. Currently, the discipline to make the greatest use of LEGO® bricks is chemistry; only limited examples exist in biochemistry and the molecular life sciences. Here, we present the use of a LEGO® brick modelling activity in the introductory biochemistry classroom during the teaching of metabolism. We present student comments on the activity and the models that were generated by the students. Additionally, we focus on other instructor and project student-designed models for the teaching of ATP synthesis, gene regulation and restriction digestion. Interestingly, both the gene regulation and restriction digest activities were generated with the help of undergraduate students or recent graduates, by applying a backward design approach. This case study seeks to encourage more molecular life science educators to adopt the use of LEGO® bricks in their classrooms to engage in more active learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.