Abstract
Metal casting foundries all across USA are increasingly adopting the recent development in additive manufacturing including 3D sand printing (3DSP) due to its unique ability to fabricate molds and cores without any tooling requirement such as patterns, cores, core boxes, flasks among others. This new method of rapid mold fabrication can accelerate process cycle times, reduce shrinkage defects, offer part consolidation, functional integration and customization that could facilitate the growth of foundry industries. This study demonstrates how the adoption of 3DSP technology has contributed to a conventional ferrous metal casting foundry that specializes in manufacturing impellers, turbine housings and other mining equipment. Four industrial case studies are presented to illustrate novel opportunities via 3DSP. These case studies validate that 3DSP has the ability to (1) reduce shrinkage by allowing casting in optimal orientation without hard-tooling requirements, (2) reduce lead time through rapid mold fabrication by easier facilitation of nesting multiple parts into a single mold, (3) allow hybrid molding by integrating 3DSP with conventional mold making and (4) fabricate tooling-less complex castings, respectively. Findings from this study would help foundries rethink their design process from traditional pattern-drawing to a new and radical freeform-based design process via 3DSP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have