Abstract

A fundamental assumption of rate-place models of pitch is the existence of harmonic templates in the central nervous system (CNS). Shamma and Klein [(2000). J. Acoust. Soc. Am. 107, 2631-2644] hypothesized that these templates have a temporal basis. Coincidences in the temporal fine-structure of neural spike trains, even in response to nonharmonic, stochastic stimuli, would be sufficient for the development of harmonic templates. The physiological plausibility of this hypothesis is tested. Responses to pure tones, low-pass noise, and broadband noise from auditory nerve fibers and brainstem "high-sync" neurons are studied. Responses to tones simulate the output of fibers with infinitely sharp filters: for these responses, harmonic structure in a coincidence matrix comparing pairs of spike trains is indeed found. However, harmonic template structure is not observed in coincidences across responses to broadband noise, which are obtained from nerve fibers or neurons with enhanced synchronization. Using a computer model based on that of Shamma and Klein, it is shown that harmonic templates only emerge when consecutive processing steps (cochlear filtering, lateral inhibition, and temporal enhancement) are implemented in extreme, physiologically implausible form. It is concluded that current physiological knowledge does not support the hypothesis of Shamma and Klein (2000).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call