Abstract
As one of the most common mesoscale structures in real-life networks, k-core hierarchical structure has attracted a lot of attention. Recent research about k-core always focuses on detecting influential nodes determining failure or epidemic propagation. However, few studies have attempted to understand how k-core structural properties can affect dynamic characteristics of network. In this paper, the influences of depth and coupling preferences of k-core on the cascading failures of interdependent scale-free networks are investigated. First, k-core structures of some real-life networks are analyzed, and a scale-free network evolution model with rich and successive k-core layers is proposed. Then, based on a load-based cascading model, the influence of the depth of k-core is investigated with a new evaluation index. In the end, two coupling preferences are analyzed, i.e. random coupling (RC) and assortative coupling (AC). Results show that the lower the depth is, the more robust the interdependent networks will be, and we find AC and RC perform dissimilarly when the capacity varies. Furthermore, all the effects will be affected by the initial load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.