Abstract

High-quality microresonators can greatly enhance light-matter interactions and are excellent platforms for studying nonlinear optics. Wavelength conversion through nonlinear processes is the key to many applications of integrated optics. The stimulated Raman scattering (SRS) process can extend the emission wavelength of a laser source to a wider range. Lithium niobate (LN), as a Raman active crystalline material, has remarkable potential for wavelength conversion. Here, we demonstrate the generation of cascaded multi-phonon Raman signals near the second-harmonic generation (SHG) peak in an X-cut thin-film lithium niobate (TFLN) microdisk. Fine tuning of the specific cascaded Raman spectral lines has also been made by changing the pump wavelength. Raman lines can reach a wavelength up to about 80 nm away from the SHG signal. We realize the SFG process associated with Raman signals in the visible range as well. Our work extends the use of WGM microresonators as effective optical upconversion wavelength converters in nonlinear optical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.