Abstract
This letter considers cascaded model predictive control (MPC) as a computationally lightweight method for controlling a tandem-rotor helicopter. A traditional single MPC structure is split into separate outer and inner-loops. The outer-loop MPC uses an SE2(3) error to linearize the translational dynamics about a reference trajectory. The inner-loop MPC uses the optimal angular velocity sequence of the outer-loop MPC to linearize the rotational dynamics. The outer-loop MPC is run at a slower rate than the inner-loop allowing for longer prediction time and improved performance. Monte-Carlo simulations demonstrate robustness to model uncertainty and environmental disturbances. The proposed control structure is benchmarked against a single MPC algorithm where it shows significant improvements in position and velocity tracking while using significantly less computational resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.