Abstract

Tumor-derived extracellular vesicles (EVs) hold the potential to substantially improve noninvasive early diagnosis of cancer. However, analysis of nanosized EVs in blood samples has been hampered by lack of effective, rapid, and standardized methods for isolating and detecting EVs. To address this difficulty, here we use the electric-hydraulic analogy to design cascaded microfluidic circuits for pulsatile filtration of EVs via integration of a cell-removal circuit and an EV-isolation circuit. The microfluidic device is solely driven by a pneumatic clock pulse generator, allowing for preprogrammed, clog-free, gentle, high-yield, and high-purity isolation of EVs directly from blood within 30 minutes. We demonstrate its clinical utility by detecting protein markers of isolated EVs from patient blood using a polyethylene glycol-enhanced thermophoretic aptasensor, with 91% accuracy for diagnosis of early-stage breast cancer. The cascaded microfluidic circuits can have broad applications in the field of EV research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.