Abstract

Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics. In this work, we report a strategy for the catalytic self-assembly of spherical nucleic acids (SNAs) programmed by two-layer cascaded DNA circuits through integrating an entropy-driven catalytic network, a catalytic hairpin assembly circuit, and a facile SNA assembly-based reporter system. This integrated system could implement ~100,000-fold signal amplification in the presence of 1 pM of input target. Possessing powerful amplification ability of nucleic acid signal, our strategy should be of great potential in fabricating more robust dynamic networks to be applied for signal transduction, DNA computing, and nucleic acid-based diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.