Abstract

The Binary Collision Approximation (BCA) and Molecular Dynamics (MD) are used to simulate low energy atomic collision cascades in solids. Results are compared and discussed on the example of copper and gold self irradiation. For MD, long range N -body potentials are built, similar to those deduced from the second moment semi-empirical tight binding model. The pair interaction contribution is splined to a Molière screened Coulomb potential at small separation distances. This hybrid potential is checked for consistency with the already assessed N -body potential by means of thermal dynamics calculations in both the canonical (NVT) and the micro canonical (NVE) ensembles. Its use for long time enhanced diffusion simulations is discussed. The BCA calculations are performed with the MARLOWE program, using the same Molière potential as for MD, and modelling the N -body contribution by a binding of the atoms to their equilibrium lattice sites. The scattering integrals are estimated by means of a 4 points Gauss-Mehler quadrature. In MD, the NVT equations of motion are integrated with a constant time step of 2 fs. For the NVE cascade simulations, the Newton equations of motion are solved with a dynamically adjusted time step, kept lower than 2 fs. The influence of the time step on the simulated trajectories is discussed. The mean number of moving atoms with total energy above threshold values ranging from 1 to 100 eV is estimated as a function of time over 300 fs both with MARLOWE and by MD. This estimate is repeated for external primary energies ranging from 250 eV to 1 keV. In the case of copper, the BCA results are found to be in remarkable agreement with MD over about 200 fs cascade development, provided the size of the crystallite used in MD is sufficiently large in order to account for the early mechanical response of the close environment. This agreement between the two methods is found to be the best when the binding energy of the target atoms as modelled in the BCA is adjusted to a value close to the cohesive energy. In the case of gold, the agreement between BCA and MD is reasonable and the results suggest the need of an accurate modelling of linear collision sequences in the BCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call