Abstract

We propose a novel, to the best of our knowledge, cascade recurrent neural network (RNN)-based nonlinear equalizer for a pulse amplitude modulation (PAM)4 short-reach direct detection system. A 100 Gb/s PAM4 link is experimentally demonstrated over 15 km standard single-mode fiber (SSMF), using a 16 GHz directly modulated laser (DML) in C-band. The link suffers from strong nonlinear impairments which is mainly induced by the mixture of linear channel effects with square-law detection, the DML frequency chirp, and the device nonlinearity. Experimental results show that the proposed cascade RNN-based equalizer outperforms other feedforward or non-cascade neural network (NN)-based equalizers owing to both its cascade and recurrent structure, showing the great potential to effectively tackle the nonlinear signal distortion. With the aid of a cascade RNN-based equalizer, a bit-error rate (BER) lower than the 7% hard-decision forward error correction (FEC) threshold can be achieved when the receiver power is larger than 5 dBm. Compared with traditional non-cascade NN-based equalizers, the training time could also be reduced by half with the help of the cascade structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.