Abstract
AbstractThe doped organic hole transport layer (HTL) is crucial for achieving high‐efficiency perovskite solar cells (PSCs). However, the traditional doping strategy undergoes a time‐consuming and environment‐dependent oxidation process, which hinders the technology upgrades and commercialization of PSCs. Here, we reported a new strategy by introducing a cascade reaction in traditional doped Spiro‐OMeTAD, which can simultaneously achieve rapid oxidation and overcome the erosion of perovskite by 4‐tert‐butylpyridine (tBP) in organic HTL. The ideal dopant iodobenzene diacetate was utilized as the initiator that can react with Spiro to generate Spiro⋅+ radicals quickly and efficiently without the participation of ambient air, with the byproduct of iodobenzene (DB). Then, the DB can coordinate with tBP through a halogen bond to form a tBP‐DB complex, minimizing the sustained erosion from tBP to perovskite. Based on the above cascade reaction, the resulting Spiro‐based PSCs have a champion PCE of 25.76 % (certificated of 25.38 %). This new oxidation process of HTL is less environment‐dependent and produces PSCs with higher reproducibility. Moreover, the PTAA‐based PSCs obtain a PCE of 23.76 %, demonstrating the excellent applicability of this doping strategy on organic HTL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.