Abstract

Accurate detection of trace biomarkers in biological samples is a key task in diagnostic testing, but it remains challenging due to the high concentration of other physiologically relevant interferences. This work presents a new electrochemiluminescence (ECL) sensing device based on a bio-inspired nanochannel membrane (NM) guarded with two differential gates. The recognition event at the aptamer gate is followed by the permitting of stimulator transport toward the metal-organic framework (MOF) gate. Proof of concept application is evaluated using cytochrome C (Cytc) as the analyte, and glucose, a commonly existing nutriment as the stimulator. The oxidase-mimic plasmonic nanoparticles induce an effective release of ECL luminophore from the MOF gate. This cascade-gates guarded NM can effectively separate biological matrices from the detection cell. Consequently, the proposed system can achieve direct sensing of 1.0nm Cytc in undiluted serum within the threshold concentrations of leukemia and lymphoma, making it attractive for point-of-care applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.