Abstract
Dissociations of z(4) ions from pentapeptides AAXAR where X=H, Y, F, W, and V produce dominant z(2) ions that account for >50 % of the fragment ion intensity. The dissociation has been studied in detail by experiment and theory and found to involve several isomerization and bond-breaking steps. Isomerizations in z(4) ions proceed by amide trans→cis rotations followed by radical-induced transfer of a β-hydrogen atom from the side chain, forming stable C(β) radical intermediates. These undergo rate-determining cleavage of the C(α)-CO bond at the X residue followed by loss of the neutral AX fragment, forming x(2) intermediates. The latter were detected by energy-resolved resonant excitation collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) experiments. The x(2) intermediates undergo facile loss of HNCO to form z(2) fragment ions, as also confirmed by energy-resolved CID and IRMPD MS(4) experiments. The loss of HNCO from the x(2) ion from AAHWR is kinetically hampered by the Trp residue that traps the OCNH radical group in a cyclic intermediate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.